
Exploring Parallel I/O Concurrency with Speculative Prefetching 
 
 

Yong Chen1  Surendra Byna1,2  Xian-He Sun1  Rajeev Thakur2  William Gropp3 
1 Department of Computer Science, Illinois Institute of Technology, Chicago, IL 

{chenyon1, bynasur, sun} @iit.edu 
2 Mathematics & Computer Science Division, Argonne National Laboratory, Argonne, IL 

thakur@mcs.anl.gov 
3 Department of Computer Science, University of Illinois Urbana-Champaign, Urbana, IL 

wgropp@uiuc.edu 
 

 
Abstract 

 
Parallel applications can benefit greatly from 

massive computational capability, but their 
performance usually suffers due to large latency in I/O 
accesses. Conventional I/O prefetching techniques are 
conservative and are limited by low accuracy and 
coverage. As the processor performance has been 
increasing rapidly and the computing power is 
virtually free, we introduce a novel speculative 
approach for comprehensive and aggressive parallel 
I/O prefetching in this study. We present the design of 
our approach, as well as challenges, solutions, and the 
prototype implementation. The experiments have 
shown promising results in reducing I/O access 
latency. 
 
1. Introduction 
 

Parallel applications are usually able to achieve 
high computational performance but suffer from large 
latency in I/O accesses [10][12]. Microprocessor 
performance keeps increasing and the multi-core 
architecture has become the trend for future high 
performance processor chip. In the mean time, the disk 
performance has been increasing very slowly causing a 
huge processor-disk performance gap, a.k.a. the I/O 
wall problem, and becoming a critical issue that limits 
the sustained performance of parallel applications. 
Although file-system level parallelism (i.e. parallel file 
system, such as Lustre, PVFS and GPFS) and disk-
level parallelism via striping (usually in the form of 
RAID) can greatly increase the I/O throughput, they 
are not capable of reducing the I/O latency effectively, 
especially in the case of many isolated or small 
accesses. 

Numerous studies have been conducted and several 
well-known strategies, such as collective I/O and data 
sieving [12][14][17], have been proposed and used to 
combine I/O requests to reduce the access latency. Yet, 
it is not possible to eliminate small I/O requests 
entirely. Data prefetching is another effective latency 
hiding solution and has been widely used [5][10][11][12][16]. 
However, the traditional prefetching strategies such as 
file-system level approaches are conservative. As the 
processor technology evolves, the computing power 
cost has been decreasing rapidly. This trend provides 
an excellent opportunity for utilizing the excessive 
computing capability to conduct comprehensive and 
aggressive data prefetching to reduce I/O access 
latency efficiently. Meanwhile, the traditional concerns 
with prefetching strategies such as increased memory 
pressure, buffer cache pollution and increased 
communication congestion, have been remedied well 
by new technologies such as much larger memory at 
low cost, dedicated memory portions for buffer cache, 
and much higher I/O bandwidth and disk-level buffer 
cache. 

In this study, we introduce a speculative prefetching 
approach to improve parallel applications I/O access 
performance. This approach is a complement to 
existing parallel I/O performance optimization 
approaches in MPI-IO, file system and disk levels, and 
can effectively explore parallel I/O concurrency further 
in addition to these existing approaches. The rest of the 
paper is organized as follows. Section 2 introduces the 
proposed approach and discusses the design and 
implementation. Section 3 presents the experimental 
and performance analysis results. Section 4 compares 
our work with others, and Section 5 concludes our 
discussions. 
 

37th International Conference on Parallel Processing

0190-3918/08 $25.00 © 2008 IEEE

DOI 10.1109/ICPP.2008.54

422



2. Speculative parallel I/O prefetching 
 
2.1. Idea and challenges 
 

The prefetching approach we propose is to 
speculatively executing a fragment of code on each 
process to identify future I/O references and to 
generate prefetch requests. The speculative execution 
deals only with I/O related operations and the 
computations that affect the I/O accesses. Since the 
computational power is enormous, the computing spent 
on speculatively executing I/O related computations 
would be negligible. An underlying library collects and 
processes the speculated I/O references identified and 
proactively fetches data into buffer cache. The cached 
data can later be retrieved by the MPI-IO library to 
serve requests from regular computation processes 
immediately. Therefore, the processor stall time on I/O 
accesses can be effectively masked. Figure 1 illustrates 
an ideal case where three periodic reads (R2, R3 and 
R4) latency are masked completely via speculative 
prefetching and the total execution time is reduced 
noticeably. 

Several challenging issues must be addressed for 
such a speculative prefetching system to work 
effectively. The first challenge is how to conduct 
speculative prefetching. Our solution is to construct a 
speculative execution prefetching thread through a 
source-to-source pre-compiler and attach it to each 
process. The pre-compiler converts the source code of 
a parallel application (MPI code in our discussion) into 
a multithreaded version, where each original process 
forms a main computation thread, and I/O related 
operations form a prefetching thread. Each prefetching 
thread shares the process rank and opened file handles 
with its parent process, but the underlying prefetching 
library maintains an implicit file table of prefetching 
thread’s current file pointer offset and does not modify 
shared file handles for thread safety. The prefetching 
threads also use them in speculated future I/O 
reference generation and communication. We track 

and compare function call identifiers to synchronize 
the prefetching thread and the computation thread, and 
to force the prefetching thread to run properly. The 
prefetching thread can usually run ahead of the 
computation thread because it only contains the 
essential computation for effective data address 
calculation. 

The second major challenge is in generating and 
handling speculated future I/O references. Our solution 
is providing prefetch function calls and a prefetch 
library to support them. The execution of prefetching 
thread does not perform real I/O operations but only 
generates speculated requests and passes them to the 
underlying library. Those I/O requests are similar to 
demand requests except they are speculated future 
demands. They include file handles, requested blocks 
information, and other necessary data structures. The 
underlying library collects speculated requests, 
generates prefetch requests (real I/O reads), and 
schedules prefetches. Another challenge is the support 
for client-side caching. The client-side buffer cache 
serves as the prefetching destination. We utilize the 
existing collective caching approach [6][7] in solving this 
issue. 

The logical flow of the proposed speculative 
parallel I/O prefetching is as follows. The parallel 
application source code is first converted with a 
source-to-source pre-compiler. After conversion, the 
parallel application forms a computation thread and a 
prefetching thread. The prefetching thread 
communicates with the prefetching library, generates 
prefetch requests and fetches data into buffer cache 
through caching library. The computation thread is 
thus able to access the cached data via the enhanced 
MPI-IO library to save processor stall time. The 
caching library and regular MPI-IO library talk to the 
underlying file system and perform actual data transfer. 
The following sub-section explains more details of the 
design and implementation. 
 
2.2. Design and implementation 
 

This section discusses the detailed design of the 
speculative parallel I/O prefetching strategy, as well as 
the prototype implementation within ROMIO [19] MPI-
IO implementation in MPICH2 [18]. 
 
2.2.1. MPI-IO caching library. To implement I/O 
prefetching, a cache closer to the computing node is 
needed. Several research projects have been working 
on MPI-IO caching libraries. Ma et al. proposed active 
buffering [9] and Liao et al. proposed collective caching 
[6][7]. Instead of reinventing a new caching library, we 
chose the collective caching code implemented on top 

Figure 1. Hiding Latency with Speculative Prefetching 

423



of MPICH2 [18]. The collective caching maintains a 
global buffer cache among multiple processes in the 
client side. Figure 2 demonstrates the high-level view 
of the collective caching design. Each client 
contributes part of its memory to construct the global 
cache pool and the high-speed interconnect network 
makes the fast cached data transfer among clients 
feasible [4]. Cache meta-data are maintained and 
distributed across processes for locating data quickly 
and avoiding a single point of performance bottleneck. 
The cache meta-data include the file descriptor, file 
offset, current owner process id, a dirty flag, byte 
range of the dirty data, and the locking status. An I/O 
requesting process must first check the caching status 
of the requested blocks before performing I/O accesses. 
If the requested blocks are not cached anywhere, the 
requesting process will fetch data from file server 
directly and cache them locally. Otherwise, the access 
requests will be forwarded to the owners that cache the 
requested blocks and served by these owners. A 
specialized cache coherency protocol is used to 
maintain the consistency among cache copies in the 
cache pool. We have customized the collective caching 
implementation for our purpose, such as disabling 
write caching and enabling read caching only. In 
addition, we utilize speculative execution results to 
direct caching policy. For instance, if the speculated 
future I/O references are already cached, these data 
blocks are given a higher priority to stay in the buffer 
cache instead of being replaced. 

 
2.2.2. MPI-IO prefetching library design. The 
syntax and semantics of our proposed speculative 
prefetching library are quite similar to the existing 
MPI-IO library design, but there are several key 
differences. First, our prefetching library calls do not 
have user specified buffer parameter. This distinction 
is straightforward because the data fetched by 
speculative prefetching calls are stored in client-side 
buffer cache and are not supposed to return to explicit 
user’s buffer. The second difference is that the 

prefetching library does not update the shared file 
pointers. It maintains an implicit file table of opened 
file handles and the prefetching thread its own file 
pointer offset. This rule is necessary to guarantee the 
correct results with our enhancement of speculative 
prefetching to the existing conventional MPI-IO 
library. The prefetching library always uses its own 
file pointers to access data blocks. Another important 
difference is that prefetching function calls are silent, 
not like ordinary MPI-IO library, which means 
prefetching calls do not return errors in general. The 
errors or exceptions caused by prefetching are 
generally discarded, and previous states are restored. 
These similarities and differences between the normal 
MPI-IO library and the proposed prefetching library 
provide us guidelines for the implementation. Figure 3 
shows the general algorithm of the prefetching library 
functions design and implementation. 

The design maintains a numeric function identifier 
for each normal MPI-IO function call and its paired 
prefetching function call. The function identifier 
increments every time when the function is called. The 
algorithm utilizes these identifiers to prevent 
prefetching calls lag behind the ordinary calls. After 
checking the function identifiers, the algorithm splits 
speculated requests into multiple blocks, and the block 
size is determined by the client-side cache settings. 

Figure 2. Collective Caching 

IOSIOSIOS

Interconnect network

Global cache pool

Meta
data

Data Data

Parallel File System

MDS

Client

Local buffer cache

IOSIOSIOS

Interconnect network

Global cache pool

Meta
data

Data Data

Parallel File System

MDS

Client

Local buffer cache

Algorithm splf 
/*MPI-IO Speculative Prefetching Library Functions*/ 
 
Input: MPI file handle, speculated requests(offset, count and data 
type) 
Output: none 
{ 

if (pre_fid++  <  fid)  
return; 

split speculated requests into blocks 
for each requested block 
{ 

if this block is already cached due to previous speculation 
utilize speculation to migrate remote cached copy to local 
nodes 

else  
{ 

allocate buffer for this block 
if succeed 
{ 

if I/O alignment is required 
perform aligned read to allocated buffer 

else  
perform disk read directly to allocated buffer 

add metadata to buffer caches list 
update its own implicit file table 
/*do not return to users’ buffer*/ 
/*do not update shared file pointers*/ 

} 
else  

return /*ignore speculation requests*/ 
} 

} 
} 

Figure 3. Algorithm of MPI-IO Prefetching Library Functions 

424



Then we perform corresponding operations depending 
on the data block’s status in current buffer cache. As 
we mentioned previously, the prefetching calls do not 
disturb the normal execution by leaving the main 
thread file pointers intact. 

 
2.2.3. MPI-IO regular library design. The normal 
library function implementation is almost the same 
with the existing implementation in ROMIO [19]. The 
algorithm shown in Figure 4 describes our 
modifications to the existing implementation. 

The algorithm maintains the calling function 
identifier for the purpose of scheduling prefetching 
functions in advance of normal MPI-IO calls. The 
algorithm divides the demand I/O request into blocks 
and check whether each block is already in the buffer 
cache or not. If the block is cached, we copy the block 
from buffer cache to user’s buffer, a parameter passed 
through the calling function, by using memcpy() 
function call directly. The exact location where the 
buffer cache should be copied to is decided by the 
index of the requested block in user’s buffer. If the 
block does not appear in the buffer cache, we perform 
I/O reads directly from underlying file system. This 
step is exactly the same as what the existing ROMIO 
implementation does. 

 
2.2.4. Speculative prefetching thread construction. 
With the support of the newly designed and developed 
caching library, prefetching library and enhanced MPI-
IO regular library, programmers are able to utilize 
these library functionalities to construct a prefetching 
thread to benefit from the proposed speculative 
execution prefetching. We have also developed a 
prototype source-to-source pre-compiler to automate 

the speculative prefetching thread construction. The 
prefetching thread construction is well addressed with 
the program slicing technique [15]. The program slicing 
technique was originally proposed for debugging and 
studying program behaviors. It relies on the Program 
Dependence Graph analysis, a combination of control 
dependence and data dependence analysis, of programs. 
It takes the source program as input and computes a 
slice, a subset of the original program, based on slice 
criterion, the variables or statements of interests. The 
construction of speculative prefetching thread can be 
mapped to program slicing problem because the 
prefetching thread is essentially a subset of the original 
program, where I/O variables and statements are of 
interests. We have utilized a well-implemented open-
source program slicing toolkit, Unravel [20], for the 
source-to-source pre-compiler development. We have 
enhanced the Unravel toolkit to support MPI semantics, 
and incorporated necessary speculative prefetching 
processing such as store removal and variable 
renaming for correct behaviors, slice criterion 
specification etc. Due to the page limitation, all details 
of the automatic construction of speculative 
prefetching code can be found in the report [3]. The 
pre-compiler further improves the usability of the 
proposed speculative prefetching for parallel 
applications developers. All users need to do is to take 
this front-end tool, convert the users’ code, re-compile 
with regular MPI compiler, and run as usual. 

 
3. Experimental results and analysis 
 

We have carried out preliminary experiments to 
verify the benefits of the proposed speculative parallel 
I/O prefetching. This section discusses the 
experimental setup and initial experimental results. 
 
3.1. Experimental setup 
 

Our experiments were conducted on a 17-node Dell 
PowerEdge Linux-based cluster. This cluster is 
composed of one Dell PowerEdge 2850 head node 
equipped with dual 2.8GHz Xeon processors and 2GB 
memory, and 16 Dell PowerEdge 1425 compute nodes 
equipped with dual 3.4 GHz Xeon processors and 1GB 
memory. The head node has two 73GB U320 10K-
RPM SCSI drives. Each compute node has a 40GB 
7.2K-RPM SATA hard drive. The experiments were 
tested on both NFS and PVFS [8] file systems. The 
PVFS was configured with one metadata server node 
and 8 I/O server nodes. All compute nodes were used 
as client nodes. The cache page size of the collective 

Algorithm rlf  
/*MPI-IO Regular Library Functions*/ 
 
Input: MPI file handle, demand requests(offset, data type, count) 
Output: user’s buffer buf 
{ 

fid++ 
split demand requests into blocks 
for each block 
{ 

if the block is already cached 
{ 

hits++ 
copy buffer cache to user specified buffer buf by using 
memcpy() 

} else  
{ 

perform reads directly from file system 
/*do not cache requested data*/ 

} 
} 

} 

Figure 4. Algorithm of MPI-IO Regular Library Functions 

425



caching was set as 64KB and the buffer cache size at 
each client was set as 32MB.  
 
3.2. Experimental results 
 
3.2.1. PBench experimental results. We have 
followed the PIO-Bench framework [13] and developed 
a parallel I/O benchmark, called PBench. The PBench 
emulates a regular parallel application’s computation 
and many small and non-contiguous I/O access 
behaviors. The computation is emulated with floating-
point calculation, and the I/O accesses are emulated 
with accessing a two dimensional double-precision 
matrix. The major difference between the PBench and 
PIO-Bench is that PBench characterizes both 

computation and I/O accesses while PIO-Bench 
characterizes I/O behaviors only. The PIO-Bench is 
usually used for measuring the peak I/O performance 
with different access patterns while the PBench is 
suitable for studying the sustained performance and the 
impact of different optimization techniques. 

We have conducted two sets of experiments with 
the PBench on NFS and PVFS respectively. In each set, 
we tested the PBench with three settings, accessing a 
4K by 4K, 8K by 8K, and 16K by 16K matrices. In 
each test, every I/O access is random, but the average 
request size is the row size. We flush the buffer cache 
before every run. The total accessed data was 128MB, 
512MB, and 2GB correspondingly. The computation 
was configured as 1M iterations calculation of each 
accessed data.  

Figure 5 and Figure 6 show the experimental results 
with 1, 2, 4, 8, and 16 processes on NFS and PVFS 
respectively. Each reported result is the average of at 
least three runs. In each figure, the three bars of every 
column represent the execution time reduction with 
speculative prefetching when tested with three cases 
respectively. The execution time was significantly 
reduced in almost all cases. The execution time 
reduction was up to 37.92%, and the average reduction 
was 29%, 33%, and 26% respectively in three cases 
when tested on NFS. When tested on PVFS, the 
execution time reduction was up to 39.45% and the 
average reduction was 28%, 28%, and 30%. 

Table 1 shows another view of these results, the 
aggregate sustained bandwidth when testing the 
PBench with accessing a 16K by 16K matrix on NFS 
and PVFS respectively. The sustained bandwidth was 
improved considerably with the speculative 
prefetching, while the PVFS achieved much higher 
bandwidth. Since the proposed speculative prefetching 
is on top of existing optimization techniques in MPI-
IO or file system level, it is a complement to existing 
approaches and can reduce I/O access latency further 
when combining with existing approaches. 

 
Table 1 Aggregate Sustained Bandwidth on NFS and PVFS 

O: Original, P: Prefetching (unit: MB/s) 

1 2 4 8 16 Num. of 
processes O P O P O P O P O P

NFS 37.3 54.1 51.6 65.9 152.0 203.2 164.2 227.1 176.1 240.6

PVFS 269.2 383.7 541.2 848.0 1048 1538 1990 2821 3969 4983

 
3.2.2. Tile 2D-convolution experimental results. The 
tile 2D-convolution is a real application to conduct 
two-dimensional convolution on each paired tile 
images. Each process is responsible for the 2D-

Figure 5. PBench Results on NFS

426



convolution of two tiles. Each tile is composed of N 
elements in both X and Y dimension. The size of each 
element varies, such as 1KB or 2KB. The 2D-
convolution uses Fast Fourier Transform (FFT) as its 
kernel. It first takes a 2D-FFT of each tile, then 
performs a point-wise multiplication of the 
intermediate results from the 2D-FFT, followed by an 
inverse 2D-FFT. A 2D-FFT can be performed by using 
1D-FFT routine via performing N times of 1D-FFT 
along rows followed by N times of 1D-FFT along 
columns of the intermediate result of the row FFT.  
 

 

 

 
Figure 6. PBench Results on PVFS 

 
Figure 7 illustrates the experimental results of the 

tile 2D-convolution application on PVFS. The first set 
of experiments were conducted with 25 processes 
where each process performs the 2D-convolution of 

two tiles, and the number of elements was set as 100 
and 200, the element size was set as 1KB and 2KB 
respectively. The total accessed data were 256MB, 
512MB, 1GB and 2GB respectively. The sustained 
bandwidth was improved by up to 20.58% and the 
average improvement was 18.37% with speculative 
prefetching. The second set of experiments was tested 
with 100 processes, where the number of elements was 
set as 50 and 100, and the element size was set as 1KB 
and 2KB respectively. The total accessed data were the 
same as the previous set of experiments. The sustained 
bandwidth was increased by up to 20.32% and the 
average improvement was 14.71% in this set. Both sets 
of experiments have verified the proposed speculative 
parallel I/O prefetching achieved considerable 
execution time reduction and sustained bandwidth 
improvement. 

 

 
Figure 7. Aggregate Sustained Bandwidth of Tile 2D-

Convolution on PVFS 
 
4. Related work 
 

Several previous studies of I/O accesses on 
distributed memory systems such as CM-5, iPSC/860, 
and the Intel Paragon XP/S [12] have shown that many 
I/O requests are small and exhibit irregular patterns. 
Madhyastha et al. and Smirni et al. studied scalable I/O 
applications and also concluded that many I/O accesses 
are small, non-contiguous and irregular [12]. These 
studies revealed that optimization techniques are 

427



desired to improve I/O access performance, especially 
in the cases of many small and irregular accesses. Data 
prefetching is an effective solution in these scenarios. 

The conventional data prefetching technique 
usually employs a heuristic prediction based on 
observation of past access histories, and predicts future 
accesses and fetch the required data in advance 
[2][5][10][12]. However, when application accesses lack 
regularity or are random, or patterns are unknown, 
heuristic prediction based approach cannot help. 
Speculative execution prefetching provides a more 
general approach because it does not rely on these 
constraints. Theoretically, it works for every 
application and it has high accuracy in discovering 
future references. The proposed parallel I/O 
prefetching approach in this study is such a solution to 
reducing I/O latency. 

There are some other speculative execution 
approaches proposed recently, such as Chang’s 
SpecHint [1], Patterson’s informed prefetching TIP [11], 
and Yang’s AASFP approach [16]. Both SpecHint and 
TIP approaches demonstrate it is fully feasible to 
speculate future I/O accesses in time and reveal this 
information to the underlying file system to fetch data 
in advance. However, their approaches are 
conservative and only utilize idle cycles to perform 
speculation. The AASFP approach provides an 
application-level speculative execution solution. This 
approach is light-weight and effective, but it is only 
designed for sequential applications. Our proposed 
approach targeted for parallel applications and has the 
merits of existing approaches. It gives a higher priority 
to speculative execution for effective latency 
overlapping considering the new trends of enormous 
computing power. The aggressive speculative 
execution approach is also being studied extensively to 
reduce memory access latency in micro-architecture 
research domain. None of existing approaches, 
however, investigates the speculative approach for 
parallel I/O latency problem yet. This study proposes a 
speculative prefetching system for parallel I/O, and 
presents the design and the implementation details. To 
our best knowledge, this is the first work in this 
direction. 

There are several recent efforts in hiding data 
access latency in other directions, such as providing a 
caching layer on the MPI-IO level. Collective caching 
[6][7] and active buffering [9] are such examples. These 
approaches are effective solutions and can benefit both 
read and write accesses. Our proposed approach is a 
complement to existing caching approaches and can 
improve I/O access performance further. 

 

5. Conclusions 
 
While the disk performance lags far behind the 

processor performance, the long disk access delay has 
a severe impact on parallel applications performance. 
The preliminary investigation has shown that data 
access performance has become a bottleneck and a 
dominant factor that decides the sustained performance 
of a high-end computing system. In this study, we 
targeted to resolving this issue via hiding disk access 
delay with a speculative parallel I/O prefetching. This 
speculative prefetching approach essentially explores 
the concurrency of computation and I/O accesses and 
hides data access delay effectively. We have presented 
the design of the system and underlying library in 
detail, and a prototype implementation with collective 
caching and ROMIO. The experimental results have 
confirmed that the proposed approach is beneficial and 
has real potential to hide I/O access delay, and in turn 
reduce the execution time and improve the sustained 
performance. Our future work includes exploring the 
speculative prefetching approach further specifically 
on multi-core architecture cluster and studying the 
related issues. 
 
6. Acknowledgements 

 
We thank Prof. Wei-Keng Liao and Prof. Alok 

Choudary from Northwestern research group for 
sharing the collective caching code with us. We are 
also grateful to anonymous reviewers for their valuable 
suggestions and comments to improve this work. This 
research was supported in part by National Science 
Foundation under NSF grant EIA-0224377, CCF-
0621435, and CCF-0702737, and by Illinois Institute 
of Technology Fieldhouse Research Fellowship. 
 
7. References 
 
[1] F. Chang, “Using Speculative Execution to 
Automatically Hide I/O Latency”, Carnegie Mellon Ph.D 
Dissertation CMU-CS-01-172, 2001. 
 
[2] Y. Chen, S. Byna, and X.H. Sun, “Data Access History 
Cache and Associated Data Prefetching Mechanisms”, in the 
Proceedings of the International Conference for High 
Performance Computing, Networking, Storage and Analysis, 
2007. 
 
[3] Y. Chen, S. Byna, X.H. Sun, R. Thakur and W. Gropp, 
“Automatic Construction of Pre-execution Prefetching 
Thread for Parallel Applications”, Illinois Institute of 
Technology Technical Report (IIT-CS-2007-22), 2007. 
 
[4] W. Feng, P. Balaji, C. Baron, L.N. Bhuyan and D.K. 

428



Panda, “Performance Characterization of a 10-Gigabit 
Ethernet TOE”, in the Proceedings of International 
Symposium on High-Performance Interconnects, 2005. 
 
[5] D.F. Kotz and C.S. Ellis, “Prefetching in File Systems 
for MIMD Multiprocessors”, in IEEE Transaction on 
Parallel and Distributed Systems, Vol. 1, No. 2, 1990. 
 
[6] W.K. Liao, A. Ching, K. Coloma, A. Choudhary and L. 
Ward, “An Implementation and Evaluation of Client-Side 
File Caching for MPI-IO”, in the Proceedings of 21st 
International Parallel and Distributed Processing 
Symposium, 2007. 
 
[7] W.K. Liao, K. Coloma, A. Choudhary, L. Ward, E. 
Russel and S. Tideman, “Collective Caching: Application-
Aware Client-Side File Caching”, in the Proceedings of the 
14th International Symposium on High Performance 
Distributed Computing, 2005. 
 
[8] W. Ligon and R. Ross, “Parallel I/O and the Parallel 
Virtual File System,” Beowulf Cluster Computing with Linux, 
edited by W. Gropp, E. Lusk, and T. Sterling, Cambridge, 
MA, pp. 493–534, 2003. 
 
[9] X.S. Ma, J. Lee and M. Winslett, “High-level Buffering 
for Hiding Periodic Output Cost in Scientific Simulations”, 
in IEEE Transaction on Parallel and Distributed Systems, 
Vol. 17, No. 3, 2006. 
 
[10] J. May, “Parallel I/O For High Performance Computing”, 
Morgan Kaufmann Publishing, 2001. 
 
[11] R.H. Patterson, “Informed Prefetching and Caching”, 
Carnegie Mellon Ph.D. Dissertation CMU-CS-97-204, 1997. 

 
[12] D. Reed, “Scalable Input/Output: Achieving System 
Balance”, The MIT Press, 2003. 
 
[13] F. Shorter, “Design and Analysis of a Performance 
Evaluation Standard for Parallel File Systems”, Master 
Thesis, Clemson University. 2003. 
 
[14] R. Thakur, W. Gropp, and E. Lusk, “Data Seiving and 
Collective I/O in ROMIO”, in the Proceedings of the 7th 
Symposium on the Frontiers of Massively Parallel 
Computation, 1999. 
 
[15] M. Weiser, “Program slicing”, in IEEE Transaction on 
Software Engineering, SE-10, 4, 1984. 
 
[16] C.K. Yang, T. Mitra and T. Chiueh, “A Decoupled 
Architecture for Application-Specific File Prefetching”, 
Freenix Track of USENIX Annual Conference, 2002. 
 
[17] W. Yu, J. Vetter, R.S. Canon and S. Jiang, “Exploiting 
Lustre File Joining for Effective Collectie I/O”, in the 
Proceedings of International Symposium on Cluster 
Computing and Grid, 2007. 
 
[18] MPICH2 website. 
http://www.mcs.anl.gov/research/projects/mpich2/ 
 
[19] ROMIO website. http://www-unix.mcs.anl.gov/romio/ 
 
[20] Unravel tool.http://www.itl.nist.gov/div897/sqg/unravel/ 
 
 

 

429


